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Abstract--Since their introduction to the geological literature by Brace ( 1959, 1960, 1961 ), Mohr circles for large 
irrotational deformations have proved valuable as aids to our understanding of deformation geometry. However. 
confusion persists regarding sign conventions. We show that there are two basic kinds of Mohr circles, each with 
its distinct set of sign conventions. These two divisions, which we call Mohr circles of the First and Second Kind. 
arc not merely reflections of one another in Mohr space. They represent two distinct aspects of the relationship 
between the space of tensor components (Mohr space) and the space of geological structures (geographical 
space). The distinction between Mohr circles of the First and Second Kind is critical when the circles are drawn 
in off-axis positions for asymmetric tensors. Constructions in Mohr space are described which correspond to 
x arious standard tensor operations including transposition, inversion, addition and various kinds of multiplica- 
tion. For some of these operations Mohr circles of one kind or the other offer advantages. 

INTRODUCTION 

IN RECENT independent publications, Means (1983) and 
De Paor (1983) have described the use of 'off-axis' Mohr 
circles for the analysis of rotational deformations and 
other asymmetric tensor quantities. The reader will note 
a conflict in the sign conventions adopted in these 
papers. The purpose of this communication is to 
demonstrate that the difference in sign convention is not 
trivial but rather reflects a basic difference in the 
relationship between Mohr space and geographical 
space for the two types of Mohr diagrams under 
discussion. 

The system adopted by Means has the advantage that 
it corresponds with the conventional system for con- 
structing Mohr circles to represent symmetric tensor 
quantities. A pole to the Mohr circle may be defined in a 
manner analogous to that for conventional on-axis Mohr 
circles. The system introduced by De Paor employs a 
simple and direct relationship between Mohr and geog- 
raphical space. One line in Mohr space always coincides 
with the corresponding direction in geographical space. 

PREVIOUS WORK 

Mohr (1882, 1900, 1914) devised the geometric con- 
struction we now call the Mohr circle, which has been 
used to analyze rank-2 tensor quantities such as stress, 
infinitesimal strain and moment of inertia. Since its 
adaptation to the analysis of large irrotational deforma- 
tions, using quadratic and shear measures, by Nadai 
( 195(0. the Mohr construction has seen extensive use in 

structural geology (e.g. Brace 1961, Ramsay 1967, 
Ragan 1973, Cobbold 1976, Means 1976). Recently 
Choi & Hsu (1971), De Paor (1979, 1981) and Means 
(1982) have shown that simple measures of stretch and 
rotation may be employed in place of quadratic and 
shear measures. 

The usefulness of the Mohr circle in relating vector 
quantities such as stresses to the orientations of the 
planes on which they act in geographical space, is greatly 
enhanced by the employment of the pole to the Mohr 
circle. The pole has been described extensively in the 
engineering literature (e.g. Drucker 1967, p. 228). It 
appears to have been first introduced to the geological 
literature by Ragan (1973, fig. 16.10c) under the alias 
"origin of planes" and has been discussed by Cutler & 
Elliott (1983) and Allison (1984), The existence of a pole 
on a Mohr circle depends on the choice of a particular set 
of sign conventions. Circles which obey these conven- 
tions and which therefore possess a pole are here termed 
Mohr circles of the First Kind. 

An alternative method for relating points on the Mohr 
circle directly with the corresponding orientations in 
geographical space was introduced by De Paor (1979, 
1981). The basic geometrical features of this construc- 
tion appeared in De La Hire (1685) in a figure repro- 
duced in De Paor (1983). Again, the choice of sign 
conventions is critical and circles having the properties 
described by De Paor (1983) are here termed Mohr 
circles of the Second Kind. 

The problem of analyzing asymmetric tensors using 
Mohr-type constructions was tackled by Becker (1904. 
fig. 32). Becker's diagram was rendered extremely com- 
plicated, however, by the choice of a line he labelled d-e 
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as radius of the circle where it would have served better 
as diameter. An equally complicated 'dyadic circle' con- 
struction was described by Mohr (1887); see Wester- 
gaard (1952) and Dureili et al. (1958). 'Land's circle' in 
Hearns (1977, fig. 16.6) and the elegant construction for 
simple shear by Thompson & Tait (1867) described 
recently in Treagus (1981) are special cases of the general 
dyadic circle construction. Hoff (1945) appears to have 
invented off-axis Mohr circles of the First Kind for 
infinitesmal rotational deformation. Prager (1961) 
described an off-axis "circle of relative velocities" with a 
pole. The method was introduced to the geological 
literature by Robin (1977), Horppener et al. (1983) and 
Lister & Williams (1983) while De Paor (1979, 1981) 
developed the analogous off-axis circles of the Second 
Kind. 

MOHR CIRCLE REPRESENTATION OF STRESS 

To clarify the distinction between Mohr circles of the 
First and Second Kind, we use the familiar example of 
the two-dimensional stress tensor P. The stress vector P 
acting on a plane whose normal is the unit vector N is 

P = Pn. (1) 

As n varies through 360 °, P describes the stress ellipse, 
and its normal and shear components (P,, P~) describe 
the corresponding Mohr circle for stress (Fig. 1). So far, 
we have said nothing of sign conventions although the 
symmetry of the stress ellipse and corresponding Mohr 
circle about central axes imply that we have a choice in 
the manner in which we associate radii of the ellipse with 
points on the circle. To draw a Mohr circle of the First 
Kind (the conventional circle for stress) we adopt the 
following conventions. 

(i) We treat compression as positive and tension as 
negative. 

(ii) We treat sinistrai shear as positive and dextral 
shear as negative. 
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Fig. 1. Stress ellipse (a) and corresponding Mohr circle of the First 

Kind (b), both drawn to the same scale. See text for details. 

(iii) We set off angles positive counter-clockwise on 
the Mohr circle, corresponding to angles measured posi- 
tive counter-clockwise in geographical space. 

Viewed in isolation, each of the choices enumerated 
above is trivial; indeed, the present authors differ in 
their personal preferences in this regard. What is impor- 
tant is the combination of sign conventions, for if any 
one of the above conventions is reversed, the construc- 
tion becomes a Mohr circle of the Second Kind. Note 
that we may reverse conventions (i) and (ii) together 
without affecting the geometric properties of the con- 
struction, since changing the signs of both axes of the 
plot is simply equivalent to turning the page upside 
down. However, reversing all three conventions does 
convert the Mohr circle from First to Second Kind. We 
also effect such a conversion if we interchange the 
normal and shear-stress axes of Mohr space, since this is 
equivalent to reversing one sign and then turning the 
page through 90 ° . 

The Mohr circle of Fig. l(b) is suitable for the descrip- 
tion of any stress state with a particular maximum value, 
Pmax and minimum value, Pmi,. If we wish to specify the 
particular case where, say, Pmax acts in the N-S direction 
and Pmm acts E-W, then we must add a pole and suitable 
geographical labels to the construction. Aligning the 
Mohr construction axes with geographical space so that 
compression plots in the east, tension in the west, sinist- 
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Fig. 2. Mohr circles of the First Kind for stress, illustrating use of the pole. (a) Case where Mohr axes ;ire aligned within 
geographical axes as shown and P ..... direction is N-S; pole is coincident with P ..... point. Diagram in the style of Drucker 
( 1967, p. 227). (b) Case where Mohr axes remain aligned as in (a) but Pm,,~ direction lies 30 ° west of north; pole mo~,es off 
P ...... point such that lines through pole to Pm,,~ and Pro,, points remain in the principal directions. Ellipses and circles in (a) 
and (b) drawn to different seales. (e) Alternative method for indicating the setting of Mohr space relative to geographical 

space, convenient when Mohr axes are set non-parallel to geographical axes. 
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Fig. 3. Stress ellipse and corresponding Mohr circles of the Second Kind. The origin of Mohr space is coincident with the 
centre of the stress ellipse. When the Pn axis of Mohr space is set parallel to the normal to any plane, the circle and the ellipse 

intersect at the tip of the stress vector P acting across that plane. 

ral shear in the north and dextral shear in the south, the 
pole for the case under discussion coincides with Pmax" 
The pole may be considered the origin of geographical 
space superimposed upon Mohr space. Any line through 
the pole meets the Mohr circle in a point representing 
the normal and shear stresses acting on a plane normal to 
that line (Fig. 2a). In particular, lines drawn from the 
pole through Pmax and Pmi, are oriented in the principal 
directions and lines which are parallel to the reference 
axes locate the points on the Mohr circle which represent 
the normal and shear stresses on the reference planes, as 
illustrated in Fig. 2(b) for principal directions 30 ° 
counter-clockwise of those in Fig. 2(a). As an alternative 
to the geographical labelling of the references axes, a 
north arrow may be drawn through the pole (Fig. 2c). It 
is important to realize that for a given state of stress in 
the crust there are an infinite number of possible poles 
on the Mohr circle. These correspond to the infinite 
number of possible settings of Mohr space relative to 
geographical space. In Fig. 2 the pole employed is for a 
setting of Mohr space with the right-hand end of the 
normal component axis pointing east. In all subsequent 
figures showing a pole, the pole shown is for a setting 
with the right hand of the normal component axis point- 
ing in the positive direction of the first (x~) geographical 
reference axis. 

We now turn our attention to the equivalent Mohr 
circle of the Second Kind. For the purpose of this 
illustration, we will reverse all three sign conventions as 
listed below. 

(iv) We treat tension as positive and compression as 
negative. 

(v) We treat dextral shear as positive and sinistral 
shear as negative. 

(vi) We set off angles positive counter-clockwise on 
the Mohr circle corresponding to angles measured posi- 
tive clockwise in geographical space. 

The resultant Mohr circle of the Second Kind is a 
mirror image of the First Kind. Furthermore,  the origins 
of Mohr space and geographic space now coincide. To 
examine the particular case where Pmax acts N-S and Pmin 
E-W,  we align the normal stress axis with the normal to 
a plane of interest: the stress P acting on that plane is 
then in its correct geographical attitude (Fig. 3). 

GENERAL MOHR CIRCLES OF THE FIRST 
AND SECOND KINDS 

Let us now consider any tensor T with components 

ITs, T121, 
T = [ T2' T22J (2) 

where Tl2 and T21 differ in general. To represent T by a 
Mohr circle of the First Kind, we plot the pole and the 
point diametrically opposite the pole on the Mohr circle, 
which we here term the antipole (Fig. 4a). The antipole 
has coordinates (T1~, TI2 ) in Mohr space while the pole 
is at (Tzz, -T21). Alternatively the column vectors of T 
are represented by points on a horizontal and a vertical 
line through the pole, these being the points (TI1, - T2t ) 
and (7"22, 7"12) plotted initially by Means (1983). 

To represent t.he same tensor T by a Mohr circle of the 
Second Kind, we first express T in terms of its column 
vectors, T~ and/ '2 .  Leaving T1 stationary, we rotate T, 
towards Tt by 90 ° to become T~, and then construct the 
Mohr circle on T1 - T~ as diameter (Fig. 4b), We may 
now represent various standard tensor operations using 
Mohr circles. 

Transposition 
To transpose the tensor T we simply interchange the 

counterdiagonal elements. I fT  has components T~j, then 
the transpose T t will have components,  Tj~, A brief 
re-examination of Fig. 4 will convince the reader that the 
problem of representing transposition on the Mohr dia- 
gram has been solved there. Figure 4(a) which was 
interpreted as a Mohr circle of the First Kind from the 
tensor T, may be reinterpreted as a Mohr circle of the 
Second Kind for the tensor T t. Similarly, Fig. 4(b) which 
was drawn as a Mohr circle of the Second Kind for T may 
now be reinterpreted as a Mohr circle of the First Kind 
for the transpose T t. Having chosen to plot the antipole 
and pole of the Mohr circle of the First Kind, we see now 
that the plotting instructions for the two kinds of Mohr 
circle are related by transposition. 

Figure 5(a) shows the transpose T t of a tensor T and, 
for completeness, Fig. 5(b) shows the operation to 
obtain the cispose T c, which may be loosely defined as 
the transpose across the counterdiagonal of T, 
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Fig. 4. Mohr circles of the First (a) and Second (b) Kinds for the same 
tensor T. Insets represent plotting schemes (see text for explanation). 
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Fig. 5. Mohr circles representing (a) tensor T and its transpose T', and 
(b) tensor T and its cisposc 1"'. 

Ti (i,j) 
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Fig. 6. Mohr circles representing multiplication of a tensor T by a 
scalar M. 

TC = [T22 Tl2] 
LT_ , T, tJ (3) 

(see Eisele & Mason 1970, p. 81). The circles in Fig. 5(a) 
may be of either kind. 

Multiplication by a scalar 

This is the simplest of operations and is illustrated in 
Fig. 6, where the Mohr circle may be of either kind. All 
distances from the origin of Mohr space are magnified by 
a common factor M. 

Multiplication by a vector 

Let the tensor T operate upon the vector V to produce 
the transformed vector TV. Let V be the magnitude of V 
and let f 'be a unit vector in its direction. We may use the 
standard pole construction to obtain the components of 
Tf" and then a simple scaling by a factor V yields the 
components of TV (Fig. 7). The Mohr construction for 
finding the stress vector corresponding to a given plane- 
normal vector is an application of this procedure where 
the scaling step is omitted because the plane-normal is a 
unit vector. 

An analogous solution may be obtained with the 
Second Kind of Mohr circle. First the reference frame is 
rotated, using the tensor transformation rule described 
below, until the axis corresponding to the first column of 
T is parallel to V. The closed dot on the Mohr circle then 
represents the vector Tf" and a simple scaling operation 
again yields TV (Fig. 7b). 

Addition of an isotropic tensor 

A.y'so,rop'ctensor[O  O] may be represen,e  by a 
point (M, O)on the Mohr diagram. Addition of any two 
tensors involves simply the addition of corresponding 
components. Since the counterdiagonal components of 
M are void, the Mohr construction for such addition 
clearly involves translation of the Mohr circle parallel to 
the diagonal components direction through a distance M 
as illustrated in Fig. 8(a), where the circle may be of 
either kind. The familiar division of the stress tensor into 
hydrostatic and deviatoric parts is a special case of this 
general construction, 
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Fig. 7(a). Mohr construction for multiplication of a vector ~" by a tensor 
T. A Mohr circle of the First Kind is plotted for T. A line in the 
direction of V is drawn through the pole to intersect the circle in a 
second point. A line drawn from the origin to this point represents the 
vector TV in magnitude but not orientation. This is then scaled up or 
down to obtain ITVI. (b) Equivalent construction using the Second 
Kind of  Mohr  Circle. The construction ofFig.  10(b) must be used first 
to set the normal components  axis in the V direction. Then TV is in the 

correct spatial position. 

Ti ( i , j )  

T T÷M 

Cl 
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b 
Fig. 8. Mohr constructions for (a) addition of an isotropic tensor M to 
a tensor T and (b) addition of ask ew symmetric tensor I~ to a tensor T. 

Addition of a skew-symmetric tensor 

Let the general tensor 1~ be skew-symmetric, with 
components 

This tensor may be represented by the point (O, +/~) in 
Mohr space and the sum T + 1~, where T is any tensor, is 
illustrated on the Mohr diagram by displacing the circle 
for T parallel to the counterdiagonal components axis 
through a distance/~ (Fig. 8b). The additive decomposi- 
tion of any tensor into a symmetric and skew-symmetric 
part is a special case of the above, as is the transposition 
of a tensor (Fig. 5a). 

Multiplication by an orthonormal tensor 

Let the tensor R be orthonormal with components 

R =  I cosw sinww] (5) 
-s in  w cos 

for some angle w. Given any tensor T, we may distin- 
guish two products, RT and TR. The tensor RT is 
represented by rotating every point on the Second Kind 
of Mohr circle for T through an angle ~o about the origin 
(Fig. 9a). On circles of the First Kind the pole moves in 
a more complicated fashion, in which a rotation by - w  
about the origin is accompanied by a rotation by 2oJ 
about the circumference of the circle. This combination 
of rotations is shown by the dotted lines in Fig. 9(b). The 
tensor TR is represented by rotating the pole and anti- 
pole of T by - w  about the origin where the circles are of 
the First Kind (Fig. 9c), or by rotation of all points on the 
circle by co about the origin and - 2oJ about the circumfer- 
ence where the circles are of the Second Kind (Fig. 9d). 
Note the parallelism of the principal directions inscribed 
in the circles for T and TR. Polar decomposition of any 
tensor into symmetric and orthonormal parts is a special 
case of the above. 

The tensor transformation rule 

We now use the Mohr construction to solve the tensor 
transformation rule, 

T' = R T R - t  (6) 

where T' is the same tensor as T but described in a 
reference frame which has been rotated through an 
angle ~o (= -45  °) in geographical space. Clearly we may 
proceed in two steps, determining first TR -1 and then 
R(TR- 1 ) .  Figur¢ 10(a) shows these steps for Mohr circles 
of the First Kind. The construction for the first step is 
similar to that shown in Fig. 9(c), except that the pole 
and antipole are rotated through arcs ¢o instead of -oJ, 
since we are dealing now with R-~ instead of R. The 
second step begins by rotating these points back through 
arcs -~o as in Fig. 9(b), such that the two sets of rotations 
cancel each other. All that remains then is to rotate the 
pole and antipole about arcs 2w around the circumfer- 
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Fig. 10. Mohr  construct ions equivalent  to the tensor  t ransformat ion 
rule for circles of  the First Kind (a) and Second Kind (b). Inset shows 
the relative orientation of the old (unpr imed)  and new (primed) axes. 

ence of the original circle. Some care is necessary with 
the sense of rotation. The pole and antipole must be 
rotated around the circle in the sense opposite to the 
sense of rotation of the new axes with respect to the old 
axes (Fig. 10a). Alternatively, the (T~I, - T21) and (T22, 
T12 ) points may be rotated in the same sense as the sense 
of rotation of the axes, as shown by Means (1983, fig. 2). 
The reader is reminded of our convention established 
earlier, and still being followed here,  for the setting of 
Mohr space relative to geographical space. The poles for 
circles T and T'  are for settings of Mohr space with the 
normal components  axis in the xl direction before trans- 
formation and in the x'l direction after transformation. 

The equivalent construction using the Mohr circle of 
the Second Kind is shown in Fig. 10(b). The transformed 
circle is unlabelled because it may be interpreted as TR-  t 
in the unprimed reference frame or as RTR -~ in the 
primed reference frame (see inset). This figure illustrates 
the fundamental difference between the two kinds of 
Mohr circle; both sets of reference axes are drawn in 
their correct geographical orientation in Fig. 10(b) (see 
inset) whereas in Fig. 10(a) the one set of axes represents 
different geographic directions before and after transfor- 
mation. Note that the tensor R may be interpreted as a 
clockwise rotation of material relative to a fixed refer- 
ence frame (Fig. 9) or a counterclockwise rotation of the 
reference frame relative to fixed material (Fig. 10b). 

d 
Fig. 9. Mohr construct ions for multiplication of a tensor by an 
or thonormal  tensor.  (a) and (b) Construct ions for the product RT 
using Mohr circles of the Second and First Kinds, rcspcctivcly. R 
represents  a 45 ° clockwise rotation. (c) and (d) Construct ions for the 
Product TR using Mohr  circles of  the First and Second Kinds, respec- 

tively, Principal directions arc parallel to the inscribed lines in (d). 

in version 

The inverse of any tensor T is 

T ~ = ]Tl-t[ T22 
L - T2t 

(7) 



Mohr circles of the First and Second Kind 699 

~j (i , j)  

T-I 

by IIITI 

isp°se T 

IL~.~~TI T-I 

Fig. 11. Mohr construction for inversion. The three successive steps 
are shown respectively by the solid, dashed, and dotted arrows (see 

text for details). 

Therefore, to invert T, we first obtain its cispose, T c, 

TC = IT= T,=I; 
LT=I T,,J (8) 

then we reverse the sign of the counterdiagonal compo- 
nents axis and scale by a factor [TI -t. These steps are 
illustrated in Fig. 11, where the Mohr circle may be of 
either kind. A more direct geometrical relationship is 
illustrated in Fig. 12. If the central axis through the Mohr 
circle for T subtends the angle oo with the horizontal axis 
in Mohr space, then the central axis through the circle 
for T-~ must subtend an angle -~o. The line joining the 
dots on the circle for T must parallel that joining the dots 
for T-  t (this being the combined effect of obtaining the 
cispose and then reflecting the diagram by changing 
signs on the counterdiagonal). Finally it is found that the 
lines joining the dots on T to those on T -1 in Mohr space 
always intersect on the reference axes and that they are 
always so divided, internally or externally, in proportion 
to the determinant ITI (see Fig. 12b). 

Tij ( i , j )  Tij (i,j) 

T I ~ T  Tij (i :j) 

CI 

Tii (i,~j) b' T 

Tij (i:]) 

o' -1 ~,u -ITI 
oh'= ITI 
00' 

b 
Fig. 12. Mohr circles for a tensor T and its inverse, illustrating further 

simple relationships between them, as described in text. 
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°f ;aScCltor S l l ~ ~ F i  ~/~'t column of T 

b 
Fig. 13. Mohr constructions for multiplication by a diagonal tensor Sd. 
(a) Circles of the First Kind for obtaining the product SaT. (b) Circles 

of the Second Kind for obtaining the product TSd. 

Multiplication by a diagonal tensor 

Let T be any tensor and let So be a diagonal tensor 

Sd=  IS01 $220]" (9) 

The product SaT is obtained by multiplying each element 
in the first row ofT by Sti and each element in the second 
row by $22. Since the pole and antipole, as plotted in 
Fig. 4(a), are functions of the rows of T, the Mohr circle 
of the First Kind is best suited to this operation. The 
Mohr construction for the product is illustrated in 
Fig. 13(a) (in the case illustrated, Sll is less than unity). 
Clearly, multiplication by a scalar (Fig. 6) represents the 
special case where SH = $22. 

Because tensor multiplication is noncommutative, the 
product T Sd differs from Sd T. In this case, each element 
in the first column of T is multiplied by Sit and each 
element in the second column by $22. Since the column 
vectors of T are recorded on the Mohr circle of the 
Second Kind, we use that construction for the product 
TS d (Fig. 13b). 

Multiplication by any tensor 

Let A and T be any tensors. Their product TA may be 
analyzed in stages as follows. First we decompose T, 

T = SR (10) 

where S is a symmetric tensor (the left-sloping French 
accent indicates left polar decomposition). Next we 
apply the tensor transformation rule to S, 

= OSdO t (11) 
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where So is diagonalized and 0 is orthonormal. The 
product may now be written 

TA = 0 Sd OtR A 

or more simply 

where 

(12) 

(The right-sloping 

TA = 0 Sd OtA (13) 

R = 0 0 ' .  (14)  

French accent indicates the right 
principal orientations; see De Paor 1983). Now each 
stage in the multiplication in equation (13) may be 
performed using Mohr constructions previously 
described. 

DISCUSSION 

In order to help the reader to understand the relation- 
ship between Mohr circles of the First and Second Kind, 
we have slightly modified the procedures described in 
Means (1983) and De Paor (1983). For the First Kind of 
circle we have plotted the antipole and pole rather than 
points representative of the tensor's column vectors. For 
the Second Kind of circle we have chosen the fixed 
column vector which is shared by geographical and 
Mohr space differently. The procedures originally 
described in Means (1983) and De Paor (1983) remain as 
perfectly valid alternatives which may even be more 
aesthetically pleasing in some cases. In fact there are 
eight ways of drawing a Mohr circle for any given tensor 
(Fig. 14). We stress, however, that only two are funda- 
mentally different in their geometrical properties, as 
described in this paper. The others are related, simply by 
rotations of the diagrams through unit orders of 90 ° , to 
one or another of the two basic kinds. 
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l-ig. 14. Eight possible Mohr circles for a given asymmetric tensor T, 
comprising lout circles of the First Kind (dashed) and four of the 
Second Kind (solid). The components of T are respectively Tii = 4.5, 

= _. ~, l,~ = -0.5,  7,~ = 7.5. The four circles intersecting the 
vertical axis arc obtained when normal components are plotted parallel 
to thi,, axi,,. "+  symbols indicate the points plotted using the convcn- 

lion ot Means (191q3). 

Geological applications have been described in Robin 
(1977) and Lister & Williams (19831 as well as in the 
previous articles of the present authors. Forthcoming 
papers will describe further applications in the field of 
intracrystalline deformation and in rock mechanics. In 
this paper we confine our attention to general relation- 
ships which we believe will have a wide range of applica- 
tions. 

Of course algebraic procedures exist for every opera- 
tion that can be described using Mohr circles. However. 
the solutions to complex mechanical problems in struc- 
tural geology often lie in first visualizing processes and 
then describing them algebraically. Just as arrows help 
us to visualize vector operations which could be 
described entirely algebraically using row and column 
vectors, so also do Mohr diagrams help in the under- 
standing of tensor operations. Once that understanding 
is obtained, numerical problems may be tackled without 
incurring errors due to graphical methods. 
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